ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yasuji Kozaki
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 542-552
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1166
Articles are hosted by Taylor and Francis Online.
We have analyzed the design windows for laser fusion power plants based on direct-drive fast ignition concepts and have examined the issues of chamber technologies and the feasibility of a small laser fusion experimental reactor suitable for developing their power plants. Target gain curves are assessed for power plants having 90- to 200-MJ fusion yields with 600-kJ to 1-MJ lasers, and for an experimental reactor [the laser fusion experimental reactor (LFER)], having a 10-MJ fusion yield with a 200-kJ laser, i.e., 100 kJ for implosion and 100 kJ for heating. The fast ignition LFER can produce its fusion output approximately one order of magnitude smaller than that of the central ignition design, so that we can use a rather small solid-wall chamber for the first stage of the LFER operation. We can also expect to decrease laser cost drastically, although for the heating laser we must develop a long-life final optics system. Using fast ignition direct-drive targets, we could design a smaller ~300-MW(electric) reactor, with 200-MJ fusion pulse energy and 4-Hz repetition rates. The smaller pulse energies mitigate pulse loads on the chamber walls and the final optics; then, we can flexibly design large 1200-MW(electric) modular plants by using multiple reactor modules. We identified the issues of liquid-wall and solid-wall chambers and proposed basic reactor concepts for a power plant (KOYO-Fast) and an experimental reactor using fast ignition direct-drive cone targets.