ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. Weisen, A. V. Melnikov, S. Perfilov, S. Lysenko
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 418-426
Technical Paper | doi.org/10.13182/FST11-A11656
Articles are hosted by Taylor and Francis Online.
This paper examines the possibility of using the principle of conservation of canonical momentum applied to heavy ion beam orbits to obtain an estimate of the local poloidal flux at the position of ionization in a tokamak plasma. The presence of a nonaxisymmetrical ripple field, induced by the discreteness of the toroidal field coils, precludes a strict application of the principle. However, the results suggest that toroidal ripple in regions outside the plasma can be accounted for using knowledge of the particle beam's initial position and angular momentum together with measurements of the secondary beam's position and angular momentum to obtain an accurate estimate of the local poloidal flux in the plasma. A way of measuring the toroidal momentum of the secondaries is proposed, using two position measurements along the trajectory. The proposed method potentially provides powerful constraints if combined with an equilibrium code for solving the Grad-Shafranov equation.