ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. G. Li, Ph. Lotte, W. Zwingmann, C. Gil, F. Imbeaux
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 397-405
Technical Paper | doi.org/10.13182/FST11-A11654
Articles are hosted by Taylor and Francis Online.
To improve the accuracy of the after-shot plasma equilibrium reconstruction on Tore Supra, the previous EFIT code, which utilizes only magnetic measurements as a constraint (we shall call it EFIT-mag in the text), has been modified into EFIT-pol by taking the far infrared polarimeter measurements into account. With a correct choice of the input parameters (mainly for the P' and FF' polynomial orders and for the weights on Faraday angles), the results reconstructed by EFIT-pol are in good agreement with the experimental values deduced from the magnetic measurements as well as with the CRONOS code simulations. In this paper, after a brief description of the EFIT code, the approach used to parameterize EFIT-pol is presented, and the accuracy improvement is shown for a typical shot of Tore Supra, as well as through statistics on a database of 95 shots of different plasma currents and additional powers.