ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. G. Li, Ph. Lotte, W. Zwingmann, C. Gil, F. Imbeaux
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 397-405
Technical Paper | doi.org/10.13182/FST11-A11654
Articles are hosted by Taylor and Francis Online.
To improve the accuracy of the after-shot plasma equilibrium reconstruction on Tore Supra, the previous EFIT code, which utilizes only magnetic measurements as a constraint (we shall call it EFIT-mag in the text), has been modified into EFIT-pol by taking the far infrared polarimeter measurements into account. With a correct choice of the input parameters (mainly for the P' and FF' polynomial orders and for the weights on Faraday angles), the results reconstructed by EFIT-pol are in good agreement with the experimental values deduced from the magnetic measurements as well as with the CRONOS code simulations. In this paper, after a brief description of the EFIT code, the approach used to parameterize EFIT-pol is presented, and the accuracy improvement is shown for a typical shot of Tore Supra, as well as through statistics on a database of 95 shots of different plasma currents and additional powers.