ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
D. Testa, Y. Fournier, T. Maeder, M. Toussaint, R. Chavan, J. Guterl, J. B. Lister, J-M. Moret, B. Schaller, G. Tonetti
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 376-396
Technical Paper | doi.org/10.13182/FST11-A11653
Articles are hosted by Taylor and Francis Online.
The ITER high-frequency (HF) magnetic sensor is currently intended to be a conventional, Mirnov-type, pickup coil, designed to provide measurements of magnetic instabilities with magnitude as low as [vertical bar]B[vertical bar] [approximately] 10-4 G at the position of the sensors and up to frequencies of at least 300 kHz. Previous prototyping of this sensor has indicated that a number of problems exist with this conventional design that are essentially related to the winding process and the differential thermal expansion between the metallic wire and the ceramic spacers. Hence, a nonconventional HF magnetic sensor has been designed and prototyped in-house in different variants using low-temperature co-fired ceramic (LTCC) technology, which involves a series of stacked ceramic substrates with a circuit board printed on them with a metallic ink (silver in our case). A method has then been developed to characterize the electrical properties of these sensors from the direct-current range up to frequencies in excess of 10 MHz. This method has been successfully benchmarked against the measurements for the built sensors and allows the electrical properties of LTCC prototypes to be predicted with confidence and without the need of actually building them, which therefore significantly simplifies future research and development (R&D) activities. When appropriate design choices are made, LTCC sensors are found to meet in full the volume occupation constraints and the requirements for the sensor's electrical properties that are set out for the ITER HF magnetic diagnostic system. This nonconventional technology is therefore recommended for further R&D and prototyping work, particularly for a three-dimensional sensor, and possibly using materials more suitable for use in the ITER environment, such as palladium and platinum inks, which could remove the perceived risk of transmutation under the heavy neutron flux that we may have with the Au (to Hg, then to Pb) or the Ag (to Cd) metallic inks currently used in LTCC devices.