ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jean Johner
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 308-349
Technical Paper | doi.org/10.13182/FST11-A11650
Articles are hosted by Taylor and Francis Online.
The HELIOS zero-dimensional code (Version 1.0) is described in detail in the case of deuterium-tritium (D-T) plasmas.The part of the code described solves in a self-consistent way the thermal equilibrium equation of a D-T thermonuclear plasma coupled to the conservation equation of the helium ash with a He*/E = const. constraint.Prominent features of the modeling are the following: description of any type of last closed magnetic surface (LCMS) by means of four portions of conics; exact closed form expressions for the poloidal surface, plasma volume, plasma surface, and LCMS length; exact surface and volume integration (for arbitrary aspect ratio) in the approximation of magnetic surfaces similar to the LCMS; parabolic type density profile and two-parameters temperature profile, both with pedestals and finite values at the separatrix; line radiation of light impurities calculated from tabulated radiative power loss functions; scalings for the pedestal temperature, L-H transition, and confinement time; modeling for the divertor thermal load; self-consistent radial build modeling for the plateau duration calculation; and detailed power plant thermal balance.Applications to ITER and DEMO operation and to inductive reactor design are given.