ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
W. R. Meier, W. J. Hogan
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 532-541
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1165
Articles are hosted by Taylor and Francis Online.
Using a simple inertial fusion energy (IFE) power plant economic model, it is demonstrated that there are several potential advantages of an IFE power plant based upon fast ignition targets compared with one based upon central ignition targets. The fast ignition version can have a lower cost of electricity (COE) at the same output power, and a smaller fast ignition plant can have the same COE as a larger central ignition plant. This paper also considers the chamber issues raised by using fast ignition targets. Some direct-drive chamber concepts must be larger for cone-focus fast ignition targets because of the increase in the X-ray output. On the other hand, the use of fast ignition hohlraum targets may allow the use of thick-liquid-wall chambers, bringing the benefits of a smaller chamber and containment building, smaller amounts of hazardous waste, and a faster and cheaper development path. However, many technology issues need resolution before these benefits can become a reality.