ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. D. Stambaugh, V. S. Chan, A. M. Garofalo, M. Sawan, D. A. Humphreys, L. L. Lao, J. A. Leuer, T. W. Petrie, R. Prater, P. B. Snyder, J. P. Smith, C. P. C. Wong
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 279-307
Technical Paper | doi.org/10.13182/FST59-279
Articles are hosted by Taylor and Francis Online.
To move to a fusion DEMO power plant after ITER, a Fusion Nuclear Science Facility (FNSF) is needed in addition to ITER and research in operating tokamaks and those under construction. The FNSF will enable research on how to utilize and deal with the products of fusion reactions, addressing such issues as how to extract the energy from neutrons and alpha particles into high-temperature process heat streams to be either used directly or converted to electricity, how to make tritium from the neutrons and lithium, how to deal with the effects of the neutrons on the blanket structures, and how to manage the first wall surface erosion caused by the alpha particle heat appearing as low-energy plasma fluxes to those surfaces. Two candidates for the FNSF are considered in this paper: normal and low aspect ratio copper magnet tokamaks. The methods of selecting optimum machine design points versus aspect ratio are fully presented. The two options are compared and contrasted; both options appear viable.