ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. I. Erofeev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 316-319
doi.org/10.13182/FST11-A11647
Articles are hosted by Taylor and Francis Online.
An analysis of existed concepts of basic turbulent plasma phenomena have shown that the most fundamental of the beginnings of plasma kinetic theory are defective. Basically, common methods of the theory yield equally rigorous justifications to incompatible versions of the same physical phenomenon. This general property stems from two inseparable reasons: the asymptotic convergence of intermediate iterative calculations and the common substitution of real plasmas by plasma ensembles. Via variations in the leading order of perturbation expansion, one generates a diversity of scenarios of the plasma physical evolution: The conditional limit of successive iterations depends on the theory leading order. Similarly, the laws of evolution of statistics of plasma ensemble cannot be independent on the ensemble content. Basic principles were formulated of gaining the informativeness of plasma theoretical deductions with account for above reasons. For a case of turbulent plasma, the technique was developed of reducing full plasma description to the most informative of possible final macrophysical scenarios. The importance of respective knowledge for researches on beam-plasma heating, plasma confinement and transport phenomena is discussed.