ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. I. Erofeev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 316-319
doi.org/10.13182/FST11-A11647
Articles are hosted by Taylor and Francis Online.
An analysis of existed concepts of basic turbulent plasma phenomena have shown that the most fundamental of the beginnings of plasma kinetic theory are defective. Basically, common methods of the theory yield equally rigorous justifications to incompatible versions of the same physical phenomenon. This general property stems from two inseparable reasons: the asymptotic convergence of intermediate iterative calculations and the common substitution of real plasmas by plasma ensembles. Via variations in the leading order of perturbation expansion, one generates a diversity of scenarios of the plasma physical evolution: The conditional limit of successive iterations depends on the theory leading order. Similarly, the laws of evolution of statistics of plasma ensemble cannot be independent on the ensemble content. Basic principles were formulated of gaining the informativeness of plasma theoretical deductions with account for above reasons. For a case of turbulent plasma, the technique was developed of reducing full plasma description to the most informative of possible final macrophysical scenarios. The importance of respective knowledge for researches on beam-plasma heating, plasma confinement and transport phenomena is discussed.