ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. V. Lvovskiy, A. L. Solomakhin
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 298-300
doi.org/10.13182/FST11-A11641
Articles are hosted by Taylor and Francis Online.
Plasma consists of two components in the Gas Dynamic Trap facility: a relatively cold and dense collisional plasma and a population of fast anisotropic ions which oscillate between mirror points. Peaks of fast ion density are made closely to the mirror points. It formes an ambipolar potential difference between these points and the center of the facility. The ambipolar potential restricts a plasma flow through the mirror region, so it influences on the plasma confinement. The ambipolar potential value can be found from the line plasma density in the central facility region. The dispersion interferometer, which is based on a CO2-laser with wavelength = 9.57 m, has been made for this purpose. The minimal line plasma density measurable with the dispersion interferometer is (nel) ~ 1013 cm-2, the time resolution is 100 s. The fast ion line density is 4 times higher than the warm ion line density in the mirror region. The ambipolar potential value is e [approximately equal] 0.7 Te in electron temperature units. Also the flute instability restriction opportunity with gradient of local electric field has been observed. The limiter voltage satisfying the condition U ~ Te is boundary for stabilization of plasma behavior.