ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. S. Popov et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 292-294
doi.org/10.13182/FST11-A11639
Articles are hosted by Taylor and Francis Online.
Thomson scattering diagnostics has been updated to allow measurements at two instants of time for either of two spatial points in plasma during a single plasma discharge. Laser produces now two 15J laser pulses with variable (0.2–100s) delay between them. It was made possible by integration into previous laser system a second independent laser oscillator. Multichannel spectral measurements of scattered radiation can be accomplished at two spatial locations simultaneously, at z1 = 4m from the input of electron beam into plasma (old location) and at z2 = 2m (new location). Three geometries of measurement are possible: a single radial point at each of plasma cross-sections at z1 and z2 or two radial points at either cross-sections at z1 or z2. Number of radial points is limited by number of available detector channels (15ch) now. We present first experimental results with 90° detection of scattered radiation with upgraded system.