ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. S. Popov et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 292-294
doi.org/10.13182/FST11-A11639
Articles are hosted by Taylor and Francis Online.
Thomson scattering diagnostics has been updated to allow measurements at two instants of time for either of two spatial points in plasma during a single plasma discharge. Laser produces now two 15J laser pulses with variable (0.2–100s) delay between them. It was made possible by integration into previous laser system a second independent laser oscillator. Multichannel spectral measurements of scattered radiation can be accomplished at two spatial locations simultaneously, at z1 = 4m from the input of electron beam into plasma (old location) and at z2 = 2m (new location). Three geometries of measurement are possible: a single radial point at each of plasma cross-sections at z1 and z2 or two radial points at either cross-sections at z1 or z2. Number of radial points is limited by number of available detector channels (15ch) now. We present first experimental results with 90° detection of scattered radiation with upgraded system.