ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. Dudnikov, R. P. Johnson
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 277-279
doi.org/10.13182/FST11-A11634
Articles are hosted by Taylor and Francis Online.
The design of an Advanced Large Volume Surface Plasma Source (LV SPS) for Neutral Beam Injectors is presented and discussed. The LV SPS will be assembled from a set of modules. Every module consists of a plasma generator with an RF saddle antenna injecting plasma and hyperthermal atoms into the expander chamber. The plasma electrode with multi-slit extraction system and localized magnetic filter is attached to the bottom flange of the expander chamber. The plasma will be generated by an RF discharge using a saddle antenna in an optimized longitudinal magnetic field. This type of discharge is very efficient for dense plasma generation. The magnetic field is used to suppress plasma diffusion to the wall, improve the efficiency of plasma generation and decrease the thermal flux to the plasma generator wall. The expanded flux of ions and hyperthermal atoms bombards uniformly the plasma electrodes of the extraction system and produces an intense beam of negative ions. With improved cooling, the average discharge power can be increased significantly above that of any existing SPS. With smaller slit emission apertures, it is possible to suppress H- stripping after extraction. These conditions are promising for reliable production of higher emission current density up to ~40–50 mA/cm2 with corresponding decrease of SPS dimensions and cost.