ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
David L. Hanson, Stephen A. Slutz, Roger A. Vesey, Michael E. Cuneo
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 500-516
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1163
Articles are hosted by Taylor and Francis Online.
Fast ignition fusion targets require a uniform cryogenic D-T fuel layer for efficient fuel assembly. Uniform beta layering of solid D-T fuel within a fast ignition capsule will be complicated by the presence of a reentrant cone for short-pulse laser access. We discuss an alternative approach to cryogenic fast ignition targets currently being developed at Sandia National Laboratories in which a liquid cryogenic fuel layer is condensed from a low-pressure external gas supply and confined between concentric plastic shells. This concentric-shell cryogenic liquid fuel target concept is particularly well adapted to a hemispherical capsule configuration for single-sided X-ray drive. Liquid cryogenic D-T targets have a number of potential advantages, including greatly reduced system cost, temperature control, fill time, and cryogenic handling requirements, compared to beta-layered D-T targets. The shape and surface quality of the liquid fuel layer is determined entirely by the bounding shells, opening the possibility for simplified fast ignition fusion energy targets. Technology issues for target fabrication are discussed, and radiation-hydrodynamics simulations of liquid fuel capsule performance are presented.