ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
J. D. Zuegel, S. Borneis, C. Barty, B. Legarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. Leblanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, N. Blanchot
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 453-482
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1161
Articles are hosted by Taylor and Francis Online.
The laser challenges and state of the art in high-energy, solid-state petawatt lasers for fast ignition (FI) research are reviewed. A number of new laser systems are currently under construction or being planned that will facilitate proof-of-principle FI experiments. Recent technological advances in each of the major ultrafast laser subsystems are reported, including chirped-pulse generation and broadband amplification in the front end, high-energy amplification, and pulse compression with adaptive wavefront correction. Unique challenges related to operating high-energy chirped-pulse-amplification laser systems for FI, such as protection from target back reflections, are also addressed.