ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 166-169
doi.org/10.13182/FST11-A11599
Articles are hosted by Taylor and Francis Online.
A comparatively small mirror fusion hybrid device may be developed for industrial transmutation and energy production from spent nuclear waste. This opportunity ensues from the large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus 150, in a subcritical fusion device surrounded by a fission mantle with the neutron multiplicity keff [approximately equal] 0.97. The geometry of mirror machines is almost perfectly suited for a hybrid reactor application, and the requirements for plasma confinement can be dramatically relaxed in correspondence with a high value of Qr. Steady state power production in a mirror hybrid seems possible if the electron temperature reaches 500 eV. A moderately low fusion Q factor, the ratio of fusion power to the power necessary to sustain the plasma, could be sufficient, i.e. Q [approximately equal] 0.15. Theoretical predictions for the straight field line mirror (SFLM) concept are presented, including results from radio frequency heating, neutron Monte Carlo and magnetic coil computations. Means to achieve an electron temperature of 500 eV are briefly discussed. The basic study considers a 25 m long confinement region with 40 cm plasma radius with 10 MW fusion power and a power production of 1.5 GW thermal.