ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. V. Anikeev, R. Dagan, U. Fischer
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 162-165
doi.org/10.13182/FST11-1T5
Articles are hosted by Taylor and Francis Online.
The paper presents a 3D numerical model of the neutron source for the transmutation of long-lived radioactive waste in spent nuclear fuel. The projected plasma type neutron source is based on the Gas Dynamic Trap (GDT) which is a special magnetic mirror system for the plasma confinement. A new improved version of the GDT type fusion neutron source is numerically simulated by use different numerical methods. New physical phenomena such as a vortex confinement, improved axial confinement, low radial transport, high etc. were included in these simulations. The experimental and theoretical foundations of these phenomena were obtained in the GDT-U experimental facility in the Budker Institute. In result the proposed neutron source has two n-zones of 2 m length with a neutron power of 1.6 MW/m and a neutron production rate up to 1.5x1018 n/s each. This source can be used for application to a fusion driven system for the burning of MA in spent nuclear fuel.