ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
A. V. Anikeev, R. Dagan, U. Fischer
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 162-165
doi.org/10.13182/FST11-1T5
Articles are hosted by Taylor and Francis Online.
The paper presents a 3D numerical model of the neutron source for the transmutation of long-lived radioactive waste in spent nuclear fuel. The projected plasma type neutron source is based on the Gas Dynamic Trap (GDT) which is a special magnetic mirror system for the plasma confinement. A new improved version of the GDT type fusion neutron source is numerically simulated by use different numerical methods. New physical phenomena such as a vortex confinement, improved axial confinement, low radial transport, high etc. were included in these simulations. The experimental and theoretical foundations of these phenomena were obtained in the GDT-U experimental facility in the Budker Institute. In result the proposed neutron source has two n-zones of 2 m length with a neutron power of 1.6 MW/m and a neutron production rate up to 1.5x1018 n/s each. This source can be used for application to a fusion driven system for the burning of MA in spent nuclear fuel.