ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V. Sokolov, X. Wei, A. K. Sen
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 154-157
doi.org/10.13182/FST11-A11596
Articles are hosted by Taylor and Francis Online.
The anomalous radial transport generated by drift wave turbulence is a fundamental open physics question in magnetic confinement systems, both in modern tokamaks and current and next generation mirror machines. The role of self-generated zonal flows (ZF) in transport regulation via its shear is a potent concept and a physics issue. ZF are believed to be spontaneously excited by drift wave turbulence via Reynolds stress from small-scale fluctuations to large-scale flow.A basic physics experimental study of zonal flows associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM). The difficult problem of detection of ZF has been solved via a novel diagnostic using the paradigm of FM (frequency modulation) in radio transmission. We find a power spectrum peak at ITG (`carrier') frequency of ~120 kHz and FM sidebands at frequency of ~2 kHz. We have definitively identified ZF with azimuthal and axial symmetry (k = 0, k// [approximately equal] 0) and radially inhomogeneous (kr [not equal] 0) flow structures in cylindrical plasmas in uniform axisymmetric magnetic field. However, quantitatively, the stabilizing effect of ZF shear appears to be small and no significant isotopic effects are observed. The unique complementary roles of ion acoustic damping and ZF shearing in the saturation of ITG have been experimentally demonstrated using stabilizing and destabilizing feedback techniques. Theoretically ZF is supposed to be saturated via ii. As this is very small both in tokamaks and CLM, we investigate the scaling ZF with in in which can be significant in CLM.