ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
V. Sokolov, X. Wei, A. K. Sen
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 154-157
doi.org/10.13182/FST11-A11596
Articles are hosted by Taylor and Francis Online.
The anomalous radial transport generated by drift wave turbulence is a fundamental open physics question in magnetic confinement systems, both in modern tokamaks and current and next generation mirror machines. The role of self-generated zonal flows (ZF) in transport regulation via its shear is a potent concept and a physics issue. ZF are believed to be spontaneously excited by drift wave turbulence via Reynolds stress from small-scale fluctuations to large-scale flow.A basic physics experimental study of zonal flows associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM). The difficult problem of detection of ZF has been solved via a novel diagnostic using the paradigm of FM (frequency modulation) in radio transmission. We find a power spectrum peak at ITG (`carrier') frequency of ~120 kHz and FM sidebands at frequency of ~2 kHz. We have definitively identified ZF with azimuthal and axial symmetry (k = 0, k// [approximately equal] 0) and radially inhomogeneous (kr [not equal] 0) flow structures in cylindrical plasmas in uniform axisymmetric magnetic field. However, quantitatively, the stabilizing effect of ZF shear appears to be small and no significant isotopic effects are observed. The unique complementary roles of ion acoustic damping and ZF shearing in the saturation of ITG have been experimentally demonstrated using stabilizing and destabilizing feedback techniques. Theoretically ZF is supposed to be saturated via ii. As this is very small both in tokamaks and CLM, we investigate the scaling ZF with in in which can be significant in CLM.