ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. D. Beklemishev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 90-93
doi.org/10.13182/FST11-A11581
Articles are hosted by Taylor and Francis Online.
Feedback control is routinely used in modern plasma traps for adjusting plasma equilibrium on the transport time scale. Some intrinsic properties of magnetic mirrors make it possible to employ feedback control for stabilization of flute modes as well. Purely electromagnetic plasma-control system that is independent of line-tying or plasma conductivity to the end-plates is proposed. The system adds transverse flexibility to the plasma column, so that any growing perturbation can be deformed to become anti-ballooning. Anti-ballooning form means reduced flute amplitude in bad-curvature regions and enhanced amplitude in expanders or other traditional stabilizers, so that energy of the perturbation becomes positive and the mode is suppressed. Detailed analysis shows that transverse flexibility (or tail-waving) of the discharge can be employed for feedback stabilization even without good-curvature regions. The only requirement is that the discharge inertia (field-weighted plasma density) and the pressure-weighted field curvature are differently distributed along the discharge. If based on inertia, the stabilization mechanism resembles the rope-walker act. Estimates show that the power cost of such stabilization is reasonable and scales inversely with the trap length.