ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. P. Pastukhov, N. V. Chudin
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 84-89
doi.org/10.13182/FST11-A11580
Articles are hosted by Taylor and Francis Online.
Low-frequency quasi-2D plasma convection and the resultant nondiffusive cross-field plasma transport in mirror-based systems are studied by means of direct computer simulations of nonlinear plasma dynamics in a frame of adiabatically reduced one-fluid MHD model. The simulations were performed for axisymmetric or effectively symmetrized paraxial mirror-based systems such as tandem mirror and gas dynamic traps. Various regimes of plasma confinement with sheared plasma rotation were modeled and analyzed. Simulations have shown formation of large-scale flute-like stochastic vortex structures, which are similar to the vortex-like structures observed in GAMMA 10 and GDT experiments. It was shown that a controlled formation of high-vorticity layers allows one to prevent fast plasma degradation and to reduce considerably the nondiffusive cross-field plasma transport even in a presence of unstable pressure driven modes with a weak MHD drive. The effect results from an appreciable nonlinear modification of dominant vortex-like structures due to a competition between pressure driven and Kelvin-Helmholtz instabilities.