ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Y. Nakashima et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 61-66
doi.org/10.13182/FST11-A11575
Articles are hosted by Taylor and Francis Online.
As the new research plan of Plasma Research Center of the University of Tsukuba, we are planning to start a study of divertor simulation under the closely resemble to actual fusion plasmas environment making an advantage of the GAMMA 10 tandem mirror and to contribute the solution for realizing the divertor in future toroidal systems. In the research plan, the concepts of two divertor devices are introduced. One has an axi-symmetric divertor configuration with separatrix (A-Div.) and the other is a high heat flux divertor simulator by using an end-mirror exit of the large tandem mirror device (E-Div.). Preparative experiments have been successfully started at the end-mirror region of GAMMA 10 and detailed behavior of end-loss particles has been investigated by using newly developed diagnostic instruments. In standard hot-ion mode plasmas (ne0 ~ 2 × 1018 m-3, Ti0 ~ 5 keV), the heat flux density of 0.8 MW/m2 and the particle flux density of 4 × 1022/sm2 were observed at 30 cm downstream of the end-mirror exit on the machine axis. It is confirmed that the heat flux density increases in proportion to the applied RF power. Superimposing the ECH pulse induces a remarkable enhancement of heat flux and a peak value in the net heat flux density of 8 MW/m2 was attained during the ECH injection, which almost comes up to the heat load level of the divertor plate of ITER. Two-dimensional visible image measurement of newly installed target plates using high-speed camera revealed a significant difference in the behavior of visible emission from plasma-material interaction. The above results give a clear prospect of generating the required performance and providing useful information for divertor studies in GAMMA 10.