ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. A. Shoshin et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 57-60
doi.org/10.13182/FST11-A11574
Articles are hosted by Taylor and Francis Online.
The paper presents experimental investigations of plasma-surface interaction and materials behavior under plasma loads relevant to type I ITER ELMs. The experiments were performed with quasi-stationary plasma accelerator QSPA Kh-50 and multi-mirror trap GOL-3 devices located in Kharkov (Ukraine) and Novosibirsk (Russia) respectively. QSPA generated repetitive plasma streams of duration 0.25 ms and the energy density up to 2.5 MJ/m2. In GOL-3 multi-mirror trap plasma was heated up to temperature of 2-4 keV by a high power relativistic electron beam. Energy density in the exhaust plasma stream vary from 0.5 to 30 MJ/m2. Surface patterns of the targets exposed by QSPA and GOL-3 plasma are analyzed. Cracking, development of tungsten surface morphology and droplets splashing are discussed. It is shown that under an applied energy density loads (>1 MJ/m2) the evolution of surface morphology due to plasma irradiation are similar for two devices in spite of the qualitative differences of particles energy of the impact plasma streams. Formation of three different crack networks with typical cell sizes of 1000, 10 and 0.3 m are identified after irradiation of tungsten surface. Experiments show that major cracks (cell size of 1000 m) are attributed to a ductile-to-brittle transition. The key role of heat loads magnitude on development of surface due to powerful plasma impacts is demonstrated.