ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Yu. Chirkov, S. V. Ryzhkov, P. A. Bagryansky, A. V. Anikeev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 39-42
doi.org/10.13182/FST11-A11570
Articles are hosted by Taylor and Francis Online.
A numerical model of ion kinetics is considered for the axially symmetrical magnetic trap. The trap contains warm Maxwellian plasma and strongly non-Maxwellian high-energy (fast) ions. The steady-state fast ion population is supported by the ionization of high-energy neutral atoms injected into the plasma. The physical model is based on the kinetic equation with the two-dimensional Fokker–Planck collision operator in the velocity phase space. Regimes of plasma exhaust through the mirrors are considered taking into account the possibility of electrostatic barrier formation. Parameters of power balance are discussed for the system under consideration.