ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
A. Yu. Chirkov, S. V. Ryzhkov, P. A. Bagryansky, A. V. Anikeev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 39-42
doi.org/10.13182/FST11-A11570
Articles are hosted by Taylor and Francis Online.
A numerical model of ion kinetics is considered for the axially symmetrical magnetic trap. The trap contains warm Maxwellian plasma and strongly non-Maxwellian high-energy (fast) ions. The steady-state fast ion population is supported by the ionization of high-energy neutral atoms injected into the plasma. The physical model is based on the kinetic equation with the two-dimensional Fokker–Planck collision operator in the velocity phase space. Regimes of plasma exhaust through the mirrors are considered taking into account the possibility of electrostatic barrier formation. Parameters of power balance are discussed for the system under consideration.