ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Roger A. Vesey, Robert B. Campbell, Stephen A. Slutz, David L. Hanson, Michael E. Cuneo, Thomas A. Mehlhorn, John L. Porter
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 384-398
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1157
Articles are hosted by Taylor and Francis Online.
Fast ignition using pulsed-power drivers combines the efficient production of X-rays to drive fusion fuel assembly with precise ultraintense laser pulses for fuel ignition. Z-pinches convert electrical energy into thermal X-ray energy with high efficiency, which makes them attractive drivers for indirect-drive fuel assembly. Currently, experiments use the Z-pinch vacuum hohlraum, in which the Z-pinch heats a hohlraum that reemits thermal X-rays to drive the capsule. Surface-guided hemispherical capsule implosion experiments in Z-pinch vacuum hohlraums are in progress to study energetics, symmetry control, and pulse shaping. Simulations including radiation asymmetry and glide-plane physics have been performed to optimize the imploded fuel. Higher density capsule implosions at a given driver energy may be possible using the Z-pinch dynamic hohlraum, in which the Z-pinch plasma itself creates the hohlraum. Capsule and hohlraum designs for both vacuum and dynamic hohlraum sources are in progress, including liquid cryogenic fuel capsules. Analytic models for D-T fuel heating and burn have been developed for scoping purposes and breakeven scaling. Implicit particle-in-cell modeling of the interaction of laser-produced energetic particles with calculated fuel configurations demonstrates that details of the entire fuel/glide material density profile significantly affect the calculated energy deposition and thus the ignition requirements.