ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
P. A. Bagryansky et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 31-35
doi.org/10.13182/FST11-A11568
Articles are hosted by Taylor and Francis Online.
A so called vortex confinement of plasma in axially symmetric mirror device was studied. This recently developed approach enables to significantly reduce transverse particle and heat losses typically caused by MHD instabilities which can be excited in this case. Vortex confinement regime was established by application of different potentials to the radial plasma limiters and end-plates. As a result, the sheared plasma flow at periphery appears which wraps the plasma core. Experiments were carried out on the gas dynamic trap device, where hot ions with a mean energy of Eh [approximately equal] 9 keV and the maximum density of energetic ions nh [approximately equal] 51019m-3 were produced by oblique injection of deuterium or hydrogen neutral beams into a collisional warm plasma with the electron temperature up to 250 eV and density nw [approximately equal] 21019m-3. Local plasma approaching 0.6 was measured. The measured transverse heat losses were considerably smaller than the axial ones. The measured axial losses were found to be in a good agreement with the results of numerical simulations. Recent experimental results support the concept of the neutron source based on the gas dynamic trap.