ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear waste: Trying again, with an approach that is flexible and vague
The Department of Energy has started over on the quest for a place to store used fuel. Its new goal, it says, is to foster a national conversation (although this might better be described as many local conversations) about a national problem that can only be solved at the local level with a “consent-based” approach. And while the department is touting the various milestones it has already reached on the way to an interim repository, the program is structured in a way that means its success will not be measurable for years.
P. A. Bagryansky et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 31-35
doi.org/10.13182/FST11-A11568
Articles are hosted by Taylor and Francis Online.
A so called vortex confinement of plasma in axially symmetric mirror device was studied. This recently developed approach enables to significantly reduce transverse particle and heat losses typically caused by MHD instabilities which can be excited in this case. Vortex confinement regime was established by application of different potentials to the radial plasma limiters and end-plates. As a result, the sheared plasma flow at periphery appears which wraps the plasma core. Experiments were carried out on the gas dynamic trap device, where hot ions with a mean energy of Eh [approximately equal] 9 keV and the maximum density of energetic ions nh [approximately equal] 51019m-3 were produced by oblique injection of deuterium or hydrogen neutral beams into a collisional warm plasma with the electron temperature up to 250 eV and density nw [approximately equal] 21019m-3. Local plasma approaching 0.6 was measured. The measured transverse heat losses were considerably smaller than the axial ones. The measured axial losses were found to be in a good agreement with the results of numerical simulations. Recent experimental results support the concept of the neutron source based on the gas dynamic trap.