ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. A. Bagryansky et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 31-35
doi.org/10.13182/FST11-A11568
Articles are hosted by Taylor and Francis Online.
A so called vortex confinement of plasma in axially symmetric mirror device was studied. This recently developed approach enables to significantly reduce transverse particle and heat losses typically caused by MHD instabilities which can be excited in this case. Vortex confinement regime was established by application of different potentials to the radial plasma limiters and end-plates. As a result, the sheared plasma flow at periphery appears which wraps the plasma core. Experiments were carried out on the gas dynamic trap device, where hot ions with a mean energy of Eh [approximately equal] 9 keV and the maximum density of energetic ions nh [approximately equal] 51019m-3 were produced by oblique injection of deuterium or hydrogen neutral beams into a collisional warm plasma with the electron temperature up to 250 eV and density nw [approximately equal] 21019m-3. Local plasma approaching 0.6 was measured. The measured transverse heat losses were considerably smaller than the axial ones. The measured axial losses were found to be in a good agreement with the results of numerical simulations. Recent experimental results support the concept of the neutron source based on the gas dynamic trap.