ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
J. K. Anderson et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 27-30
doi.org/10.13182/FST11-A11567
Articles are hosted by Taylor and Francis Online.
A new 1 MW neutral beam injector (START-20F) is in operation on the Madison Symmetric Torus (MST) reversed field pinch. The beam, consisting of two arc discharge plasma generators, an optimized ion optical system and an integrated neutralizer/injector tank, operates at 25kV and up to 40A of neutrals for a 20 msec pulse (compared to a typical MST pulse length of 60 msec). The injected 1 MW of hydrogen neutrals (with approximately 85% in the full energy component) is significant compared to the 3-4 MW of ohmic input power in a typical target discharge. At this beam energy and a background electron density of about 1x1019 m-3 and temperature 1keV, roughly 90% of the injected power is deposited within the plasma. Initial experiments with the high power NBI show a large heating of the bulk ions: the fit of the width of energy spectrum as measured by Rutherford scattering (which is generally related to core ion temperature) quickly increases from 180eV to 230eV. This apparent significant and rapid heating of bulk ions is difficult to explain by classical collisions only, as modeling predicts 75% of the injected power is deposited on electrons and 15% on ions. The confinement of the fast ions (measured by the persistence in time of fusion neutrons due to a small fraction of deuterium in the beam fuel) is much greater than the canonical 1 msec confinement of particles and energy in the MST. The fast particle confinement is measured to increase with magnetic field strength. Further recent experiments document fast particle confinement time versus direction of injection (parallel or antiparallel to central magnetic field), beam energy, and background plasma properties.