ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Diablo Canyon completes dry storage campaign, seeks ISFSI license renewal
Holtec International announced that it has completed the campaign to transfer Diablo Canyon’s spent nuclear to dry storage ahead of its planned schedule, paving the way for the continued operation of the central California nuclear power plant.
M. Tuszewski et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 23-26
doi.org/10.13182/FST11-A11566
Articles are hosted by Taylor and Francis Online.
The Field Reversed Configuration (FRC) is a high-beta Compact Toroid that includes closed and open field line regions of poloidal magnetic field. Improving the transport properties of both regions is important for the overall FRC confinement and may be attempted in the C-2 device. The goal of this experiment is to explore FRC sustainment by combining heating and current drive from neutral beam injection and particle fueling from a pellet injector. Additions to the C-2 device may include magnetic mirror plugs, plasma guns, and electrically-biased limiters. These additions would permit us to explore combined FRC and mirror physics, with emphasis on improving the FRC confinement.