ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
A. V. Burdakov et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 9-16
doi.org/10.13182/FST11-A11564
Articles are hosted by Taylor and Francis Online.
The paper summarizes recent advances in physics of multiple-mirror confinement. GOL-3 in Novosibirsk is the only existing large-scale device of this type. Achieved plasma parameters are: n ~ 1021 m-3, T ~ 2 keV, E ~ 1 ms. Intense experimental and theoretical studies revealed several new collective phenomena that radically change plasma behavior in the trap as compared to simple classical theory. These phenomena are intrinsically linked to the second major feature of GOL-3, namely, fast plasma heating by a high-power relativistic electron beam. Collective beam-plasma interaction delivers energy to plasma through strong Langmuir turbulence and changes other plasma properties as well. In particular, the turbulent plasma in GOL-3 features suppressed axial heat transport, fast collective heating of ions, limitation of axial particle loss, and MHD stabilization by a magnetic shear. Mentioned phenomena greatly improve prospects of multiple-mirror confinement for fusion reactor applications. An outlook for possible fusion-scale device is presented.