ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kunioki Mima, T. Takeda, FIREX Project Group
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 358-366
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1154
Articles are hosted by Taylor and Francis Online.
This paper introduces the next generation of fast ignition research facilities now under construction and describes in detail the Japanese project Fast Ignition Realization Experiment (FIREX-I) and its proposed follow-up, FIREX-II. Both the facilities and their scientific objectives are presented. FIREX-I and the other two facilities described in subsequent papers - OMEGA EP at the University of Rochester and the Z-Petawatt at Sandia National Laboratories - will conduct proof-of-principle experiments for the fast ignitor concept. The facilities consist of two components: a long-pulse ( > ns) driver capable of compressing and assembling the fusion fuel and a separate petawatt-class laser for heating. For the FIREX project, the present status of the construction of the 10-kJ-level, high-energy petawatt Laser for Fusion Experiment is reported, and the theoretical basis for high-density plasma heating with an ~10-kJ, 10-ps petawatt laser is discussed to show how this heating pulse is predicted to achieve the plasma parameters required for the fast ignition. The required petawatt spot size, the tolerable carbon fraction in the proposed D-T-loaded foam cryogenic target, appropriate heating laser pulse shape, and the required electron stopping range are explored. The theoretical analysis includes the use of Fokker-Planck simulation to describe the heating of the dense plasma by relativistic electrons created in the petawatt laser-plasma interactions. This modeling indicates that if 30% of the 10-kJ petawatt laser energy is coupled by relativistic electrons into D-T plasmas compressed to 100 to 200 g/cm3, the plasmas will be subsequently heated to 5 keV and fusion gains, defined as fusion energy produced divided by the total incident (compression and heating) laser energy, as high as 0.1 can result.