ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kunioki Mima, T. Takeda, FIREX Project Group
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 358-366
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1154
Articles are hosted by Taylor and Francis Online.
This paper introduces the next generation of fast ignition research facilities now under construction and describes in detail the Japanese project Fast Ignition Realization Experiment (FIREX-I) and its proposed follow-up, FIREX-II. Both the facilities and their scientific objectives are presented. FIREX-I and the other two facilities described in subsequent papers - OMEGA EP at the University of Rochester and the Z-Petawatt at Sandia National Laboratories - will conduct proof-of-principle experiments for the fast ignitor concept. The facilities consist of two components: a long-pulse ( > ns) driver capable of compressing and assembling the fusion fuel and a separate petawatt-class laser for heating. For the FIREX project, the present status of the construction of the 10-kJ-level, high-energy petawatt Laser for Fusion Experiment is reported, and the theoretical basis for high-density plasma heating with an ~10-kJ, 10-ps petawatt laser is discussed to show how this heating pulse is predicted to achieve the plasma parameters required for the fast ignition. The required petawatt spot size, the tolerable carbon fraction in the proposed D-T-loaded foam cryogenic target, appropriate heating laser pulse shape, and the required electron stopping range are explored. The theoretical analysis includes the use of Fokker-Planck simulation to describe the heating of the dense plasma by relativistic electrons created in the petawatt laser-plasma interactions. This modeling indicates that if 30% of the 10-kJ petawatt laser energy is coupled by relativistic electrons into D-T plasmas compressed to 100 to 200 g/cm3, the plasmas will be subsequently heated to 5 keV and fusion gains, defined as fusion energy produced divided by the total incident (compression and heating) laser energy, as high as 0.1 can result.