ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Homma, H. Kadota, H. Hosokawa, M. Nagata, T. Fujimura, K. Nagai, M. Nakai, T. Norimatsu, H. Azechi
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 276-278
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11537
Articles are hosted by Taylor and Francis Online.
Recent developments of several key issues for fabrication techniques of cone and shell target for the first phase of the Fast Ignition Realization Experiment (FIREX-I) project at the Institute of Laser Engineering, Osaka University, are described in this paper. The most important modification of the target design is a double cone, and a new fabrication technique has been developed. Although the error of assembling the cones is still several microns, the first prototype of a double-cone target with a vacuum gap of 20 m was successfully provided for the preliminary experiment. Additionally, Ti:sapphire laser machining was used to bore a hole in the polystyrene shell.