ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Standard Nuclear executes OTA with DOE
Reactor-agnostic TRISO fuel producer Standard Nuclear recently announced that it has executed an other transaction agreement (OTA) with the Department of Energy. As one of the five companies involved in the DOE’s Fuel Line Pilot Program, its entrance into this deal marks a milestone in the public-private effort to bring advanced fuel production on line in support of the DOE’s concurrently running Reactor Pilot Program.
K. M. Saito, J. F. Hund, M. Wittman, A. Nikroo, J. W. Crippen, J. S. Jaquez, E. M. Giraldez
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 271-275
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11536
Articles are hosted by Taylor and Francis Online.
Fill tubes are being implemented to meet direct-drive National Ignition Facility (NIF) target designs and eliminate the need for permeation filling of targets. Significant improvements have been made to the fill tube designs for the NIF-scale CD and fast ignition targets to accommodate fuel-layering experiments at the University of Rochester Laboratory for Laser Energetics. The initial fill tube design had a number of issues that contributed to the nonuniformity of the deuterium (D2) ice layer and low fabrication yield of targets. Redesign of the entire target has significantly improved the D2 ice layering by reducing thermal perturbations. These design changes also made a more robust target that can survive the handling required in fabrication and testing. This paper will detail the target design aspects that were altered, including adjusting the fill tube aspect ratio, removing the thermally conductive support stalk, and adding a thermally conductive coating on the fill tube.