ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. M. Saito, J. F. Hund, M. Wittman, A. Nikroo, J. W. Crippen, J. S. Jaquez, E. M. Giraldez
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 271-275
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11536
Articles are hosted by Taylor and Francis Online.
Fill tubes are being implemented to meet direct-drive National Ignition Facility (NIF) target designs and eliminate the need for permeation filling of targets. Significant improvements have been made to the fill tube designs for the NIF-scale CD and fast ignition targets to accommodate fuel-layering experiments at the University of Rochester Laboratory for Laser Energetics. The initial fill tube design had a number of issues that contributed to the nonuniformity of the deuterium (D2) ice layer and low fabrication yield of targets. Redesign of the entire target has significantly improved the D2 ice layering by reducing thermal perturbations. These design changes also made a more robust target that can survive the handling required in fabrication and testing. This paper will detail the target design aspects that were altered, including adjusting the fill tube aspect ratio, removing the thermally conductive support stalk, and adding a thermally conductive coating on the fill tube.