ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Kazuo A. Tanaka, Ryosuke Kodama, Peter A. Norreys
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 342-357
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1153
Articles are hosted by Taylor and Francis Online.
This paper reviews the important schemes that have been investigated thus far in fast ignition research. Integral experiments for fast ignition research have been conducted utilizing various schemes: (a) double-pulse experiments with two 100-ps pulses injected to a compressed core, (b) gold cone-guided implosion with 100-TW laser pulse heating, and (c) imploded core heated by both a 100-TW and petawatt laser pulses through gold cones. Reviewing these results, several important issues were raised for further development of fast ignition research. The imploded core heated by a petawatt laser through a gold cone showed a 103 D-D neutron increase compared to the one with only the CD shell implosion.