ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
G. E. Lee, N. B. Alexander, E. Diaz, J. D. Sheliak
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 227-233
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11529
Articles are hosted by Taylor and Francis Online.
A system for automated assembly and mounting of targets at high throughput rates has been developed at General Atomics. Major components of the system include two, six-axis industrial robot arms; a high-precision glue-dispensing system; a vision system; and a piezoelectric translation stage for precise positioning of parts. All operations are controlled by computer, with feedback from the vision system to the piezoelectric stage and robots.Assembly and mounting of cone-in-shell targets is described. A key requirement for these targets is that the virtual cone tip (the projection of the cone sides to a single point in space) must be aligned to the shell center to within ±10 m. Major steps in the process include (a) gluing capsules to zirconia handling posts with water-soluble glue; (b) cutting holes in the tops of the capsules to accept cones; (c) assembling the cones to the capsules, forming a target; (d) gluing carbon fiber "stalks" to carriers on which the targets are mounted; and (e) removing targets from the handling posts and gluing them to stalks on carriers.The system has been demonstrated to be capable of assembling and mounting on the order of 500 targets per week. With further optimization, throughput rates of 1000 per week appear achievable.