ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
S. P. Hatchett, D. Clark, M. Tabak, R. E. Turner, C. Stoeckl, R. B. Stephens, H. Shiraga, K. Tanaka
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 327-341
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1152
Articles are hosted by Taylor and Francis Online.
The fast ignition concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current baseline fast ignition target is a shell fitted with a reentrant cone extending to near its center. Conventional direct or indirect drive collapses the shell near the tip of the cone, and then an ultraintense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. Two-dimensional (2-D) calculations of this concept have sparsely explored the large design space available to optimize compaction of the fuel and maintain the integrity of the cone. Experiments have generally validated the modeling while revealing additional complexities. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density, inner-core plasma that exhausts out toward the tip of the cone. The hot, low-density inner core can impede the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain, and jetting toward the cone tip can affect the cone integrity. Thicker initial fuel layers, lower velocity implosions, and drive asymmetries can lead to decreased efficiency in converting implosion kinetic energy into compression. Fast ignition burn hydrodynamics can generate additional convergence and compression. We describe 2-D and one-dimensional approaches to optimizing designs for cone-guided fast ignition.