ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
B. Reneaume, G. Allegre, R. Botrel, H. Bourcier, R. Bourdenet, O. Breton, R. Collier, C. Dauteuil, F. Durut, A. Faivre, E. Fleury, I. Geoffray, G. Geoffray, L. Jeannot, L. Jehanno, O. Legaie, G. Legay, S. Meux, G. Paquignon, J. P. Perin, J. Schunk, M. Theobald, C. Vasselin, F. Viargues
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 148-154
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11517
Articles are hosted by Taylor and Francis Online.
The cryogenic target assemblies (CTAs) designed for Laser Mégajoule (LMJ) experiments have many functions and have to meet severe specifications imposed by implosion physics, the CTA thermal environment, and the CTA interfaces with the Mégajoule laser cryogenic target positioner. Therefore, CTA fabrication uses many challenging materials and requires several technological studies. During the last 2 years, many developments have enabled better collection of comprehensive data on target constitutive materials and improvements in the fabrication of the CTA base, hohlraum, and aluminum turret.Studies have been carried out (a) to better characterize thermal properties of materials allowing optimization of the thermal simulation of the hohlraum, (b) to improve the CTA base fabrication process in order to optimize thermal studies of the LMJ experimental filling station (EFS), and (c) to determine coatings on the polyimide membrane that may limit the 300 K thermal effect on the microshell and increase the deuterium-tritium fuel lifetime.CTAs have been produced to evaluate fabrication knowledge, to characterize CTAs, to study air tightness, and to study filling and D2 ice layering on the EFS.An overview of the results that have been obtained during the past 2 years is presented in this paper.