ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. Nazon, E. Brun, F. Durut, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 139-147
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11516
Articles are hosted by Taylor and Francis Online.
In order to decrease the wall absorption of hohlraums during the laser-matter interaction encountered in X-ray indirect-drive inertial confinement fusion, a thick layer of depleted uranium (DU) and gold alloy can be deposited on the inner surface of the hohlraums. Such a coating can be achieved by sputtering simultaneously DU and gold directly into the hohlraums. This technique is called "moulding PVD." In order to validate the moulding PVD technique, Au/Mo cocktail layers were deposited on glass substrates by simultaneous multitarget sputtering. Molybdenum is used for deposition of cocktail alloys since it shows the same sputtering yields as uranium. Au/Mo cocktail layers can be easily grown on glass substrates at any desired composition and controlled thickness by optimizing the deposition parameters. A major issue of DU deposition is its rapid delamination in contact with water, air, or hydrogen. To protect the DU/Au alloy, a thin coating of dense gold is sputtered on the DU alloy. Dense and low-stress gold thin films deposited on glass substrates have been achieved by optimization of processing parameters. The effect of such a coating has been quantified thanks to the study of praseodymium oxidation (which is more sensitive to delamination than DU). A gold coating thickness of 0.2 m thoroughly decreases the oxidation rate of praseodymium in contact with air.