ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. Nazon, E. Brun, F. Durut, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 139-147
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11516
Articles are hosted by Taylor and Francis Online.
In order to decrease the wall absorption of hohlraums during the laser-matter interaction encountered in X-ray indirect-drive inertial confinement fusion, a thick layer of depleted uranium (DU) and gold alloy can be deposited on the inner surface of the hohlraums. Such a coating can be achieved by sputtering simultaneously DU and gold directly into the hohlraums. This technique is called "moulding PVD." In order to validate the moulding PVD technique, Au/Mo cocktail layers were deposited on glass substrates by simultaneous multitarget sputtering. Molybdenum is used for deposition of cocktail alloys since it shows the same sputtering yields as uranium. Au/Mo cocktail layers can be easily grown on glass substrates at any desired composition and controlled thickness by optimizing the deposition parameters. A major issue of DU deposition is its rapid delamination in contact with water, air, or hydrogen. To protect the DU/Au alloy, a thin coating of dense gold is sputtered on the DU alloy. Dense and low-stress gold thin films deposited on glass substrates have been achieved by optimization of processing parameters. The effect of such a coating has been quantified thanks to the study of praseodymium oxidation (which is more sensitive to delamination than DU). A gold coating thickness of 0.2 m thoroughly decreases the oxidation rate of praseodymium in contact with air.