ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Nazon, E. Brun, F. Durut, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 139-147
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11516
Articles are hosted by Taylor and Francis Online.
In order to decrease the wall absorption of hohlraums during the laser-matter interaction encountered in X-ray indirect-drive inertial confinement fusion, a thick layer of depleted uranium (DU) and gold alloy can be deposited on the inner surface of the hohlraums. Such a coating can be achieved by sputtering simultaneously DU and gold directly into the hohlraums. This technique is called "moulding PVD." In order to validate the moulding PVD technique, Au/Mo cocktail layers were deposited on glass substrates by simultaneous multitarget sputtering. Molybdenum is used for deposition of cocktail alloys since it shows the same sputtering yields as uranium. Au/Mo cocktail layers can be easily grown on glass substrates at any desired composition and controlled thickness by optimizing the deposition parameters. A major issue of DU deposition is its rapid delamination in contact with water, air, or hydrogen. To protect the DU/Au alloy, a thin coating of dense gold is sputtered on the DU alloy. Dense and low-stress gold thin films deposited on glass substrates have been achieved by optimization of processing parameters. The effect of such a coating has been quantified thanks to the study of praseodymium oxidation (which is more sensitive to delamination than DU). A gold coating thickness of 0.2 m thoroughly decreases the oxidation rate of praseodymium in contact with air.