ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Brian M. Patterson, Kimberly A. Obrey, George J. Havrilla
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 121-125
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11513
Articles are hosted by Taylor and Francis Online.
Confocal micro X-ray fluorescence (confocal MXRF) is continuing to be explored as a method for characterizing copper and argon doped sputtered beryllium capsules. Previously demonstrated was the utility of confocal MXRF in both the two- and three-dimensional modes and overlaying the data with X-ray micro computed tomography as a method of nondestructive analysis. In this paper, the relative amount of copper dopant was measured as a function of capsule theta, examining the changes in the amounts of copper around the circumference of the capsule and comparing the relative amount of copper between capsules. A theta stage was specially constructed in order to perform line scans through the capsule wall while keeping the geometry of the measurement constant. Four capsules (one unpyrolyzed and three pyrolyzed) were examined with this method. The noise of the measurements averaged 1.43%, and differences within a capsule as a function of theta were 2.15%, with differences between capsules [approximately]13% indicating that the measurement noise was approximately half the overall variation in copper signal and far less than the measured differences between capsules. These differences in the amount of copper within a capsule and between capsules are much greater than that obtained using absorption techniques.