ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Brian M. Patterson, Kimberly A. Obrey, George J. Havrilla
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 121-125
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11513
Articles are hosted by Taylor and Francis Online.
Confocal micro X-ray fluorescence (confocal MXRF) is continuing to be explored as a method for characterizing copper and argon doped sputtered beryllium capsules. Previously demonstrated was the utility of confocal MXRF in both the two- and three-dimensional modes and overlaying the data with X-ray micro computed tomography as a method of nondestructive analysis. In this paper, the relative amount of copper dopant was measured as a function of capsule theta, examining the changes in the amounts of copper around the circumference of the capsule and comparing the relative amount of copper between capsules. A theta stage was specially constructed in order to perform line scans through the capsule wall while keeping the geometry of the measurement constant. Four capsules (one unpyrolyzed and three pyrolyzed) were examined with this method. The noise of the measurements averaged 1.43%, and differences within a capsule as a function of theta were 2.15%, with differences between capsules [approximately]13% indicating that the measurement noise was approximately half the overall variation in copper signal and far less than the measured differences between capsules. These differences in the amount of copper within a capsule and between capsules are much greater than that obtained using absorption techniques.