ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
R. Kodama, P. A. Norreys, Y. Sentoku, R. B. Campbell
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 316-326
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1151
Articles are hosted by Taylor and Francis Online.
A reentrant cone concept for efficient heating of high-density plasmas has been studied as an advanced fast ignition scheme. The roles of the reentrant cone, as indicated by particle-in-cell (PIC) code simulations and confirmed by basic experiments, are reviewed, particularly the efficient collection and guidance of the laser light into the cone tip and the direction of the energetic electrons into the high-density region. It has been shown that the energetic electrons converge to the tip of the cone as a result of the surface electron flow guided by self-generated quasi-static magnetic fields and electrostatic sheath fields. As a result, the energetic electron density at the tip is locally greater than the case of using an open geometry such as a normal flat foil target. Using these advantageous properties of the reentrant cone, efficient fast heating of imploded high-density plasmas has been demonstrated in integrated fast ignition experiments. A hybrid PIC code (LSP) has been used to understand the relativistic electron beam thermalization and subsequent heating of highly compressed plasmas. The simulation results are in reasonable agreement with the integrated experiments. Anomalous stopping appears to be present and is created by the growth and saturation of an electromagnetic filamentation mode that generates a strong back-electromagnetic force impeding energetic electrons.