ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. C. Montesanti, E. T. Alger, L. J. Atherton, S. D. Bhandarkar, C. Castro, E. G. Dzenitis, G. J. Edwards, A. V. Hamza, J. L. Klingmann, D. M. Lord, A. Nikroo, T. G. Parham, J. L. Reynolds, R. M. Seugling, M. Stadermann, M. F. Swisher, J. S. Taylor, P. J. Wegner
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 70-77
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3713
Articles are hosted by Taylor and Francis Online.
The Precision Robotic Assembly Machine was developed to manufacture the small and intricate laser-driven fusion ignition targets that are being used in the National Ignition Facility. The machine enables one person to assemble a high-quality precision target in 1 day with repeatable quality. The target assembly technician provides top-level control of the machine, initiating and controlling the movement of the motorized precision instruments. Hand movements are scaled to precision at the 100-nm level. Sensors embedded in the manipulator system provide 100-mg resolution force and gram-millimeter resolution torque feedback of the contact loads between delicate components being assembled with micrometer-level or no clearance. Combining precision motion control with force and torque feedback provides active compliance for assembling tightly fitting or snap-together components. The machine provides simultaneous manipulation of five objects in a 1-cm3 operating arena and can stitch together multiple millimeter-scale operating arenas over distances spanning tens of centimeters with micrometer-level accuracy. Technology developed with the machine has been migrated to other machines used to assemble fusion targets.