ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Bhandarkar, T. Parham, J. Fair
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 51-57
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3718
Articles are hosted by Taylor and Francis Online.
For the various tuning as well as ignition campaigns, targets on the National Ignition Facility (NIF) need to be filled with gases, typically with the different isotopes of H2 and He. Fill tubes that supply the two small chambers in the target, the capsule and the hohlraum, are microcapillaries that are only tens of microns in diameter and present significant impedance to flow. Knowledge of the exact pressures and gas compositions in the capsule and the hohlraum is critical for fielding targets on NIF. This requires modeling of the gas flow through the capillary tubes, at both room temperature and cryogenic temperatures. We present results from a comprehensive model and its experimental verification for a range of conditions such as temperature and pressure.