ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Huang, R. B. Stephens, S. A. Eddinger
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 39-45
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-39
Articles are hosted by Taylor and Francis Online.
High image resolution ([approximately]1.3 m/pixel) and precision positioning capability make the Xradia X-ray microscopy an attractive platform on which to study X-ray opacity variations. It can complement precision radiography (PR) as an instrument with much higher spatial resolution. PR measures X-ray transmission intensity variations down to 0.01% at 100-m resolution. Since the requirement to differentiate minute lateral variations in X-ray transmission intensity scales inversely with the spatial resolution, an X-ray imaging microscope such as the Xradia MicroXCT can be useful if it measures the transmission intensity variations to <1%. In normal practice, a number of imaging artifacts limit the intensity measurement to only [approximately]2% precision. Such artifacts include the thermal drift and the illumination uniformity of the X-ray source, as well as thickness variations in the scintillator plate and the beryllium X-ray tube window. The conventional flat-fielding technique is not effective against the dynamic interaction between the beryllium window texture and the moving shadow cast by a moving X-ray spot. We have modified the image processing routine so that the lateral variations in the transmitted intensity can be measured to [approximately]0.3% precision on low-Z samples. This technique can be used to record microstructure variations in beryllium samples. Currently, the beryllium microstructures are characterized by ultrasmall angle X-ray scattering on a synchrotron source, which is not commonly accessible, is expensive, and has a long turnaround time. This Xradia-based method has the potential to make it a routine measurement.