ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. R. Freeman, D. Batani, S. Baton, M. Key, R. Stephens
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 297-315
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1150
Articles are hosted by Taylor and Francis Online.
This paper reviews the physics of extremely high current propagation in dense materials. We consider explicitly the problem of the generation of high-current, high-particle energy propagation arising from laser ionization in otherwise neutral targets. The paper concentrates upon the recent experimental results of measurements of the distribution of the laser-generated fast electrons, both in space as well as in energy. The emphasis is primarily to put into physical context the growing number of experimental observations under widely varying conditions. Little or no effort is made to summarize the theoretical or modeling work because of manuscript size limitations; however, when possible, experimental observations are tied to relevant attempts to model the observed behavior. The fundamental conclusion is that fast electron propagation, at a current density and kinetic energy relevant to fast ignition, is far from a solved problem and that target design for fast ignition will have to play a significant role to overcome some of the emerging physical obstacles.