ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
K. L. Sequoia, H. Huang, R. B. Stephens, K. A. Moreno, K. C. Chen, A. Nikroo
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 35-38
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-35
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion capsules must be manufactured with a high degree of azimuthal symmetry to avoid degradation by Rayleigh-Taylor instabilities. Therefore, the azimuthal fluctuations of each capsule must be characterized. We have developed a precision radiography method capable of measuring X-ray optical depth fluctuations to 1 part in 104 with a spatial resolution of 120 m. Achieving the measurement accuracy requires counting many photons.Recent measurements of glow discharge polymer (GDP) capsules show that the high X-ray intensity required to minimize measurement time modifies the GDP shell by increasing the oxygen atomic percent. An equatorial band forms that is more optically dense than the remainder of the capsule. We believe that free radicals are formed in the GDP as a result of the X-ray exposure. These free radicals preferentially absorb oxygen from the air. We will discuss how this optically dense band forms, how it is measured, and possible solutions to this issue.