ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. J. Kozioziemski, E. R. Mapoles, J. D. Sater, A. A. Chernov, J. D. Moody, J. B. Lugten, M. A. Johnson
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 14-25
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3697
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion requires very smooth and uniform solid deuterium-tritium (D-T) fuel layers. The National Ignition Facility (NIF) point design calls for a 65- to 75-m-thick D-T fuel layer inside of a 2-mm-diam spherical ablator shell to be 1.5 K below the D-T melting temperature (Tm) of 19.79 K. We find that the layer quality depends on the initial crystal seeding, with the best layers grown from a single seed. The low modes of the layer are controlled by thermal shimming of the hohlraum and meet the NIF requirement with beryllium shells and nearly meet the requirement with plastic shells. The remaining roughness is localized in grain-boundary grooves and is minimal for a single crystal layer. Once formed, the layers need to be cooled to Tm - 1.5 K. We have studied dependence of the roughness on the cooling rate and found that cooling at rates of 0.03 to 0.5 K/s is able to preserve the layer structure for a few seconds after reaching the desired temperature. The entire fuel layer remains in contact with the shell during this rapid cooling. Thus, rapid cooling of the layers is able to satisfy the NIF ignition requirements.