ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
B. J. Kozioziemski, E. R. Mapoles, J. D. Sater, A. A. Chernov, J. D. Moody, J. B. Lugten, M. A. Johnson
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 14-25
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3697
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion requires very smooth and uniform solid deuterium-tritium (D-T) fuel layers. The National Ignition Facility (NIF) point design calls for a 65- to 75-m-thick D-T fuel layer inside of a 2-mm-diam spherical ablator shell to be 1.5 K below the D-T melting temperature (Tm) of 19.79 K. We find that the layer quality depends on the initial crystal seeding, with the best layers grown from a single seed. The low modes of the layer are controlled by thermal shimming of the hohlraum and meet the NIF requirement with beryllium shells and nearly meet the requirement with plastic shells. The remaining roughness is localized in grain-boundary grooves and is minimal for a single crystal layer. Once formed, the layers need to be cooled to Tm - 1.5 K. We have studied dependence of the roughness on the cooling rate and found that cooling at rates of 0.03 to 0.5 K/s is able to preserve the layer structure for a few seconds after reaching the desired temperature. The entire fuel layer remains in contact with the shell during this rapid cooling. Thus, rapid cooling of the layers is able to satisfy the NIF ignition requirements.