ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
K. C. Chen, K. A. Moreno, Y. T. Lee, J. J. Wu, A. Q. L. Nguyen, H. Huang, K. Sequoia, A. Nikroo
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 8-13
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-8-13
Articles are hosted by Taylor and Francis Online.
The National Ignition Tuning Campaign involves a dozen capsule designs. These capsule designs vary in diameters, layer thicknesses, and germanium doping levels, examining implosion velocity, entropy, hot-spot shape, mix, and uncertainty. Overall yield of these tuning capsules involves meeting all individual specifications, including layer thicknesses, doping levels, outer surface smoothness, and inner diameter. The yield of scaled tuning capsules with acceptable inner diameters is greatly affected by the available mandrel diameter and its size distribution.Surface low mode and isolated defect specifications have been tightened. The new specification allows smaller and fewer isolated defects. The surface specification is quantified in terms of low mode factors, peak velocity root-mean-square (PVRMS), mix mass, and ignition threshold function (ITF). The total mix mass from all isolated defects should be <40 ng, and the PVRMS value should be <10 m. While most current capsules meet the PVRMS requirement, only some tuning capsules have a mix mass <40 ng. The majority of capsules have a mix mass >40 ng, caused by a few larger domes. The ITF is related to isolated defects and capsule power spectra. Some capsules exceed the ITF specification value of 1.3.