ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
K. C. Chen, K. A. Moreno, Y. T. Lee, J. J. Wu, A. Q. L. Nguyen, H. Huang, K. Sequoia, A. Nikroo
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 8-13
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-8-13
Articles are hosted by Taylor and Francis Online.
The National Ignition Tuning Campaign involves a dozen capsule designs. These capsule designs vary in diameters, layer thicknesses, and germanium doping levels, examining implosion velocity, entropy, hot-spot shape, mix, and uncertainty. Overall yield of these tuning capsules involves meeting all individual specifications, including layer thicknesses, doping levels, outer surface smoothness, and inner diameter. The yield of scaled tuning capsules with acceptable inner diameters is greatly affected by the available mandrel diameter and its size distribution.Surface low mode and isolated defect specifications have been tightened. The new specification allows smaller and fewer isolated defects. The surface specification is quantified in terms of low mode factors, peak velocity root-mean-square (PVRMS), mix mass, and ignition threshold function (ITF). The total mix mass from all isolated defects should be <40 ng, and the PVRMS value should be <10 m. While most current capsules meet the PVRMS requirement, only some tuning capsules have a mix mass <40 ng. The majority of capsules have a mix mass >40 ng, caused by a few larger domes. The ITF is related to isolated defects and capsule power spectra. Some capsules exceed the ITF specification value of 1.3.