ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Y. Sentoku, W. Kruer, M. Matsuoka, A. Pukhov
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 278-296
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1149
Articles are hosted by Taylor and Francis Online.
In the fast ignition scheme, the compressed core is surrounded by a 1-mm-scale coronal plasma. The critical density where the laser deposits energy is still more than 100 m away from the core. The distance is much longer than the laser focus radius or the core size. This situation raises an important question: How can we couple laser energy to the core from such a distance? One of the techniques that has been proposed to overcome this problem is hole boring by the ponderomotive pressure of the incident laser light. In this paper, the physics related to the laser hole boring, including the parametric instabilities, the channel formation, and the hot electron acceleration by ultraintense laser light, are discussed. The maximum density where the laser can propagate by hole boring is obtained as a function of the intensity. This agrees well with experimental observations, and it is confirmed by numerical simulations. The acceleration mechanism of hot electrons in the magnetic channel is also identified. The hot electrons are characterized by the numerical simulations. In summary, the critical issue of energy coupling in this scheme is raised and discussed.