ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J. Ongena, A. M. Messiaen
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 425-440
Technical Paper | Plasma and Fusion Energy Physics - Fusion Reactor Issues | doi.org/10.13182/FST06-A1142
Articles are hosted by Taylor and Francis Online.
The total amount of heating power coupled to the plasma Ptot and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product :NT = Ptot2/3 Vol = 3N2T2Vol/Ptot > (NT)ignition (1)with T ~= 15keVwhere = E/Ptot is the energy confinement time, E = 3NT Vol for an isothermal plasma with Ti = Te = T and a plasma volume Vol; N is the plasma density. The value T ~= 15 keV corresponds to the minimum value of (NT)ignition as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by Ptot = POH + Padd where POH is the ohmic power and Padd is the additional heating due to neutral beam injection or R.F. heating. At ignition, the additional heating power must come completely from the energetic particles produced by the fusion reactions and we must have Ptot = P if we neglect the residual POH and the plasma losses by Bremsstrahlung (PBr [is proportional to] N2T1/2).