ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xing Zhong Li, Chong Xin Li, Hai Feng Huang
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 324-330
Technical Paper | doi.org/10.13182/FST99-A113
Articles are hosted by Taylor and Francis Online.
Based on three major anomalous phenomena in 9 yr of research on nuclear reactions in solids, researchers assume that a resonant tunneling model explains the experimental observation. Using a square-well configuration, the maximum resonant tunneling current through the Coulomb barrier is shown to be of the order of 1/, while the nonresonant tunneling current is of the order of 1/2 (1/2 is the Gamow tunneling factor). The distinction between the resonant tunneling model and the compound nucleus model is discussed. Particularly, the ion energy band in the deuteride is invoked to generate the necessary long lifetime (d + d)x state. This resonant tunneling model might provide a mechanism for low-energy nuclear transmutation as well.