ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Kentaro Ochiai, Katsuhiko Maruta, Hiroyuki Miyamaru, Akito Takahashi
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 315-323
Technical Paper | doi.org/10.13182/FST99-A112
Articles are hosted by Taylor and Francis Online.
To look for the signature of coherent multibody fusion, experiments of D-beam implantation were carried out using a highly preloaded TiDx (x = 1.4) target and a counter telescope of a E-E charged-particle spectrometer. As a result of the experiments, two unique particles were repeatedly observed, namely, 3He (4.75 MeV) and triton (4.75 MeV) from 3D fusion proposed by a new class of fusion theory in solids. The two unique charged particles were identified as products of the reaction channel of 3D to t + 3He + 9.5 MeV by the combinational analyses of one- and two-dimensional data. The experimentally obtained 3D fusion rate was of the order of 103 fusions/s, a surprisingly large value, which was enhanced ~1026 times compared with the traditional theory of random (noncoherent) D-D reaction and its sequential D-D-D reaction process.