ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Thomas V. Prevenslik
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 309-314
Technical Paper | doi.org/10.13182/FST99-A111
Articles are hosted by Taylor and Francis Online.
Sonoluminescence (SL) observed in the collapse of bubbles in liquid H2O may be explained by the Planck theory of SL, which finds basis in quantum mechanics and relies on the bubble walls to be blackbody surfaces as originally envisioned by Planck. By this theory, the source of SL is the electromagnetic (EM) radiation field of the bubble wall described by the absorption (and emission) spectra of liquid H2O from ultraviolet (UV) at ~254 nm to soft X rays. During bubble collapse, the resonant frequency of the bubble cavity always increases. If the resonant frequency coincides with the EM radiation field, cavity quantum electrodynamics (QED) induces EM radiation at that frequency to be emitted from the bubble wall. Subsequently, the emitted EM radiation is absorbed. But cavity QED inhibits the spontaneous emission of any EM radiation absorbed at a frequency lower than the current bubble resonant frequency. Instead, the absorbed EM radiation may accumulate to be released as SL photons or it may be converted to free electrons either directly by the photoelectric effect or indirectly by the microwaves generated as the bubble collapses. By any combination of these processes, the collective EM radiation in the bubble wall is effectively focused on the gases within the bubble in the manner of a variable frequency UV to soft X-ray laser. A limited number of deuterium-deuterium (D-D) fusion events is suggested for ambient temperatures near the freezing point. Planck energies in excess of 10 keV/D2O vapor molecule are found as the D's in the low-density plasma are forced together under bubble wall collision pressures of ~200 atm. For a 20-kHz acoustic drive frequency, the thermal heating is of the order of a few microwatts, but neutrons should be detectable.