ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Thomas V. Prevenslik
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 309-314
Technical Paper | doi.org/10.13182/FST99-A111
Articles are hosted by Taylor and Francis Online.
Sonoluminescence (SL) observed in the collapse of bubbles in liquid H2O may be explained by the Planck theory of SL, which finds basis in quantum mechanics and relies on the bubble walls to be blackbody surfaces as originally envisioned by Planck. By this theory, the source of SL is the electromagnetic (EM) radiation field of the bubble wall described by the absorption (and emission) spectra of liquid H2O from ultraviolet (UV) at ~254 nm to soft X rays. During bubble collapse, the resonant frequency of the bubble cavity always increases. If the resonant frequency coincides with the EM radiation field, cavity quantum electrodynamics (QED) induces EM radiation at that frequency to be emitted from the bubble wall. Subsequently, the emitted EM radiation is absorbed. But cavity QED inhibits the spontaneous emission of any EM radiation absorbed at a frequency lower than the current bubble resonant frequency. Instead, the absorbed EM radiation may accumulate to be released as SL photons or it may be converted to free electrons either directly by the photoelectric effect or indirectly by the microwaves generated as the bubble collapses. By any combination of these processes, the collective EM radiation in the bubble wall is effectively focused on the gases within the bubble in the manner of a variable frequency UV to soft X-ray laser. A limited number of deuterium-deuterium (D-D) fusion events is suggested for ambient temperatures near the freezing point. Planck energies in excess of 10 keV/D2O vapor molecule are found as the D's in the low-density plasma are forced together under bubble wall collision pressures of ~200 atm. For a 20-kHz acoustic drive frequency, the thermal heating is of the order of a few microwatts, but neutrons should be detectable.