ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Reich, K. Behler, R. Drube, L. Giannone, A. Kallenbach, A. Mlynek, J. Stober, W. Treutterer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 58 | Number 3 | November 2010 | Pages 727-732
Selected Paper from Sixth Fusion Data Validation Workshop 2010 (Part 2) | doi.org/10.13182/FST10-A10921
Articles are hosted by Taylor and Francis Online.
For applications of advanced plasma control schemes, many computers that execute complex algorithms need to communicate with low latency so that result data are promptly available for operating adequate actuators that can directly influence the plasma behavior. ASDEX Upgrade has completed the commissioning phase of its real-time diagnostic framework serving that purpose. Several applications were successfully tested, and progress toward a full feedback neoclassical tearing mode stabilization loop is evident. The new real-time diagnostics comprise several new diagnostics capable of acquiring raw data (up to 1 MHz, up to 60 channels), processing the raw data (calibrate, transform, evaluate, etc.) and transmitting the results over suitable networks to other computers, all in real time. Projects for machine safety (divertor cooling and hot spot detection), physics studies [regulation of density peaking by application of electron cyclotron resonance heating (ECRH)], and real-time state monitors (ECRH deposition calculation) have demonstrated the capabilities of the new diagnostics and the control framework. The control system can now operate its actuators in line with decisions based on algorithms with rather high complexity. Adding new control algorithms has become a distributed effort with manageable overhead.