ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Miura, M. Mori, T. Shoji, H. Matsumoto, K. Kamiya, K. Ida, S. Kasai
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 96-121
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1090
Articles are hosted by Taylor and Francis Online.
The flexible mid-sized machine of JFT-2M has contributed to the understanding of the physics of improved confinement and the control of improved discharges using some innovative techniques. The improved confinement modes achieved during additional heating on JFT-2M were H-mode in both divertor and limiter configurations, improved L-mode, counter-neutral-beam injection, and pellet-injected H-mode. These improved modes are characterized by two improvements: (a) H-mode that has sharp density and temperature gradients at the edge and (b) other modes that have peaked density, temperature, and toroidal rotation profiles near the center. The improvement of pellet-injected H-mode achieved by central fueling was a combination of H-mode and core improvement with peaked profiles. The discovery of limiter H-mode had an impact on the physics understanding of H-mode and showed the formation of a transport barrier at a place without discontinuity of the magnetic field line topology. The appearance of edge-localized modes (ELMs) by applying ergodic fields was investigated, and it was clarified that n 4 helical components were effective in producing ELMs. Scrape-off-layer biasing had the effect of compressing neutrals at the divertor region. It would be understood that compressed neutrals at the divertor region might increase banana ion loss through charge exchange and increase the negative radial electric field inside the separatrix. This situation would reduce the H-mode power threshold. High-recycling-steady (HRS) H-mode could be reproducibly obtained by boronization using tri-methyl-boron. It was found that HRS appears at a pedestal collisionality of e* > 1.